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Abstract. Some properties of small sodium clusters, comprising up to 45 atoms, are described using a
projected spherical single particle basis. The variation of the cluster shape and inner density with the
number of atoms is studied. Seemingly chestnut, clusterization and halo like structures are identified for
several metallic clusters. Static polarizabilities and plasmon frequencies are calculated and compared with
experimental data and with results obtained in different approaches.

PACS. 36.40.-c Atomic and molecular clusters – 73.20.Mf Collective excitations (including excitons,
polarons, plasmons and other charge-density excitations)

1 Introduction

Although it is very old, the field of metallic cluster has
been reinforced in 1984 by the pioneering paper of Knight
et al. [1] pointing out the electronic shells in alkali-metallic
clusters. Since that time many works have been performed
on both theoretical and experimental sides. The notable
contributions in the new era of the field have been re-
viewed by several papers in the last decade [2–4].

The most interesting category of clusters seems to
be those with a moderate number of atoms. Indeed for
such systems neither statistical models [5] nor ab initio
quantum-chemical methods [6] are justified. Instead the
mean field approach is vastly used. Several solutions defin-
ing the mean field for the single particle motion have been
employed along the years. Among them, three procedures
are to be distinguished: (i) solving the Kohn-Sham equa-
tions [7], (ii) assuming that the positive charge of the
ionic core is uniformly distributed in a sphere of radius
R. This is known in the literature as jellium hypothesis
[8,9], (iii) postulating the average potential [10].

Since the shell structure and magic numbers are associ-
ated to the spherical symmetry, the spherical clusters have
been intensively studied. However there are some features
like the detailed structure of the abundance spectrum [11],
or the split of plasmon energies [12–14], which cannot be
explained assuming a spherical symmetry for the mean
field. The first paper devoted to the deformed clusters was
due to Clemenger and published in 1985 [15]. The author
adapts the Nilsson model formulated for nuclear systems
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[16], by ignoring the spin-orbit term. The resulting model
is referred to as Clemenger-Nilsson (CN) model. The CN
model was very successful in explaining several proper-
ties which depend on the shape of the cluster and which
could not be described within a formalism using a mean
field with spherical symmetry. The model is suitable to de-
scribe the single particle properties in the intrinsic frame
and especially for strong coupling regime when the wave
function of the whole system can be factorized into an
intrinsic part and a Wigner function accounting for the
rotational degrees of freedom. However there are many
properties which are very sensitive to the change of angu-
lar momentum of the system. Moreover in most cases “K”
is not a good quantum number and therefore the factor-
ization mentioned above is not possible. The typical case
of this kind is that of systems of triaxial shape. A many
body treatment of such situations would require a subse-
quent projection of the angular momentum. However such
operation is technically very difficult to be achieved and
to our knowledge up to now only approximative solutions
have been proposed. In a previous publication, one of us
(A.A.R.) proposed a solution for constructing a single par-
ticle basis with good spherical symmetry and depending
on deformation [17]. Before being used in an RPA (random
phase calculations) approach, the model should be tested
for pointing its ability to account in a realistic fashion
for the main features of the deformed clusters. Thus, in
reference [17] the cluster shape, the magic numbers, and
super-shell effects have been determined and a good agree-
ment with the data as well as with the previous theoretical
results have been obtained.
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The aim of the present paper is to continue the ex-
ploration of the cluster properties within the projected
spherical basis introduced in reference [17]. The specific
structure of the single particle wave functions should be
reflected in the charge distribution of the valence elec-
trons. This structure might be important when one wants
to investigate the response of the cluster to the action of
an external electromagnetic field. In reference [18], a par-
allel study of nuclear systems and atomic clusters has been
performed and the conclusion was that the two systems
have many similar properties. Studies of momentum dis-
tributions in reference [19] also show such a parallelism. In
this context we find worthwhile looking for satellite clus-
ters with skin structure, empty center, hard center, cluster
subsystems and halo behavior. Such properties might be
seen in the structure of the density function. If these struc-
tures are identified then another questions deserves atten-
tion namely whether they manifest themselves when the
cluster interacts with an external electromagnetic field.

The project sketched above is accomplished according
to the following plan. In Section 2 a brief review of the
theoretical model of reference [17] is presented. The va-
lence electron density is studied in Section 3. The cluster
spatial extension is investigated in Section 4 by calculating
the root mean square (r.m.s.) radii. The static polarizabil-
ities and plasmon frequencies are calculated in Section 5.
The final conclusions are drawn in Section 6.

2 The mean field and the projected spherical
basis

We restrict our considerations to the energy domain of
laser beam experiments (i.e. optical domain) where only
the valence electrons may be excited and de-localized, the
remaining ones defining the atomic core. Under these cir-
cumstances we could study those atomic cluster proper-
ties which are mainly determined by the valence electrons.
The picture is even more simplified if the cluster building
block is an alkali-metal. In this case the interacting sys-
tem of electrons and positively charged ions is replaced
by a system of interacting electrons moving in a mean
field which accounts for the influence of the ionic core on
the single particle motion. Each atom of a given cluster is
represented by one valence electron.

In a previous publication [17], the mean field for the va-
lence electrons is defined with the help of a model Hamil-
tonian associated to the particle-core interacting system

Hpc =
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2me
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meω

2
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≡ Hp +Hc +Hint, (2.1)

where αλµ are shape variables defining the deformed ionic
core through the surface equation:

R = R0
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α∗λµYλµ (θ, φ)

 . (2.2)

The parameters defining Hp are the same as in reference
[15], i.e. D = −0.04h̄ω0 and h̄ω0 = EFN−

1
3 with EF

and N standing for the Fermi energy and the number
of atoms. The volume conservation condition allows us
to relate the monopole and quadrupole coordinates [17].
The shape coordinates α2µ and their conjugate momenta
define the boson operators b+2µ associated to the harmonic
vibration of the core:

α2µ =
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The above canonical transformation is determined up to
a constant k. The term describing the core is:

Hc = ωc

∑
−2≤µ≤2

b†2µb2µ, (2.4)

while the single particle Hamiltonian Hp is just the spher-
ical shell model operator from which we omit, as usual,
the spin-orbit term. Note that Hpc (Eq. (2.1)) is invariant
to rotations performed in the product space of the particle
and core states.

Let us consider the coherent state

|Ψc〉 = exp
(
d
(
b+20 − b20

))
|0〉, (2.5)

where |0〉 and d are used to denote the quadrupole boson
vacuum and a real parameter simulating the quadrupole
deformation, respectively. Averaging Hpc on the coherent
state (2.5) one obtains, a deformed single particle Hamil-
tonian which is, up to an additive constant, similar to the
Nilsson-Clemenger Hamiltonian

〈Ψc|Hpc|Ψc〉 ≡ H(d)
p ≈ HNC. (2.6)

The volume conservation condition determines a
monopole term in the single particle Hamiltonian H

(d)
p .

The Hamiltonians H
(d)
p and HNC have the same func-

tional dependence on spatial coordinates. However they
differ from each other by the coefficients determining the
strength of the deformation. We require that the average
of the α∗2µY2µ term in the particle-core Hamiltonian is
identical to the deformed single particle potential from
the Clemenger Hamiltonian. This provides an equation
relating the deformation parameters δ and d in the
Nilsson-Clemenger and the present models, respectively:

d = k

√
2π
45

(Ω2
⊥ −Ω2

z) (2.7)
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with:
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(

2 + δ

2− δ

)1/3

, Ωz =
(

2 + δ

2− δ

)−2/3

. (2.8)

The state Ψc describes the ground state of a deformed
quadrupole boson Hamiltonian

H(d)
c = ωc

[∑
µ

b+2µb2µ − d
(
b+20 + b20

)
+ d2

]
. (2.9)

We could define a coherent state for the particle motion
Ψp so that the corresponding average of Hpc is the boson
operator H(d)

c .
Concluding, the averaging operation on coherent states

breaks the rotational symmetries since some dynamical
variables are frozen at their static values. This suggests
a mechanism of restoring the rotational symmetry in the
space of single particle states. One could use the eigen-
states of the particle core Hamiltonian for treating the
single particle motion. In this case the matrix elements
for the operators acting on particle degrees of freedom are
obtained by integrating first over the core variables which
results in overlapping the core components of the wave
function. Instead, in reference [17], a simpler way of treat-
ing the deformed single particle mean field was presented.
Indeed, through a projection method, a set of orthogonal
states having spherical symmetry was defined:

φIM;σ (nl; d) = N I
nl(d)

[
P IMI |nlI〉Ψc(d)

]
χσ,

for I 6= 0, l = even

φ00;σ(nl; d) = N 0
nl(d)

[
P 0

00 [|nl〉ŝ]l+1,0 Ψc(d)
]
χσ,

for I = 0, l = odd (2.10)

where P IMK denotes the angular momentum projection
operator and N I

nl(d) the norm of the projected state. For
the state with I = 0, l = odd, the use of the spin operator
ŝ to construct a state of good angular momentum is neces-
sary. The standard notation for the spherical shell model
state is used:

|nlM〉χσ = RnlYlMχσ. (2.11)

These functions might approximate the eigenfunctions
of Hpc obtained through diagonalization in the basis[
|nl〉φ(c)

J

]
IM

χσ, with φ
(c)
JM denoting the state of good

quantum numbers J,M , projected out the state Ψc(d) de-
scribing the deformed core. Moreover, according to the
arguments mentioned before, they approximate the states
of good angular momentum projected from the eigenstates
of H(d)

p .
If one neglects the matrix elements with ∆l = ±2 and

∆n = 2 the eigenvalues of Hpc within the projected spher-
ical basis can be fairly well approximated by the average

values:
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where FIl is a geometric factor given in reference [17]1.
To conclude, in our model the Hamiltonian for the sin-

gle particle motion is H(d)
p . Its eigenvalues are approx-

imated by εInl(d) given by the equation (2.12) while a
subset of projected spherical eigenstates is described by
the orthogonal basis defined by (2.10). How the particle
operators are treated in the space of projected states, is
explained in detail in reference [17]. As shown there, the
space spanned by the projected states {φIM,σ(n, l)} has a
larger dimension that the single particle space in the NC
model. Indeed, here the energy level of a given total angu-
lar momentum I 6= 0, has a degeneracy equal to 4(2I+ 1)
while for the I = 0 case the degeneracy is equal to 2. By
contrast, in the CN model the states have the degeneracy
equal to 4− 2δΛ,0. The difference comes from that in the
CN model the states are considered in the intrinsic frame
while in the present model they are considered in the lab-
oratory frame. To simulate the distribution of fermions
in the intrinsic states, for each projected I state one al-
lows that 4 (or 2 in the case of I = 0) electrons occupy,
with equal probability, the (2I + 1)-M states. For exam-
ple the electron density for a system with N electrons is
defined by:

ρ =
∑ ν(I)

2I + 1
| ΦIM,1/2(n, l) |2, ν(I) = 4− 2δI,0,

(2.13)

where the summation is performed over all occupied
states.

The model presented above was successfully used [17]
to describe several essential properties of the Na clusters:
magic numbers, cluster shapes, super-shell effects. In all
applications presented, it was considered that the core
contribute to the single particle energies only via the inter-
acting terms and thereby we took ωc = 0. This assumption
is adopted also in the present paper.

Two distinctive features of the present model are to be
mentioned. The mean field is determined by averaging the
particle-core Hamiltonian on a coherent state describing
the deformed core. As a result the mean field depends on

1 In reference [17] there is a miss-print in the expression
defining the energies referring to the sign of D and the expo-
nent of the

�
Ω2
⊥ −Ω2

z

�
term multiplying FIl. Numerical results

correspond to the correct formula (2.12).
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Fig. 1. The single particle energies given by equation (2.12),
in units of h̄ω0 are plotted as functions of the deformation
parameter d. 33e equilibrium deformation for a system with N
electrons is shown by black circles. The quantum number of
the corresponding state [NlI] are also presented.

the core deformation. The procedure resembles the Born-
Oppenheimer approximation. The core contributes to the
single particle energies (see the structure of the projected
states) and therefore to removing the M -degeneracy, not
only by its ground state but also through its excited states.
This feature simulates the cluster property saying that the
distortion of single particle orbits is due to the vibration
of the ionic core [20]. Higher multipoles, introduced in the
mean field in reference [21], seem not to influence essen-
tially the properties analyzed in the present paper.

In the next section we shall investigate some new prop-
erties of the Na clusters.

3 Electron density

Here we shall use the same conventions as in reference [17].
For the sake of a self standing presentation we mention
them below. The units are of a.u. type (h̄ = me = c = 1).
For length and energy the units are 0.53 Å and 2Ry =
27.2 eV. The oscillator length b and energy quanta h̄ω0

are 3N 1
6 a.u. and 0.11N− 1

3 a.u., respectively. Some of the
results will be compared to the jellium model (JM) where
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Fig. 2. The energy of the highest occupied state in NaN is
given in units of eV.

the ionic charge is uniformly distributed in a sphere of
radius

R = rsN
1
3 (3.1)

with rs standing for the Wigner Seits radius which for
sodium clusters is about 3.93 a.u.

The single particle energies are given in Figure 1 as a
function of the deformation parameter d. The energy of a
cluster with N atoms is calculated by summing the single
particle energies, corresponding to a given deformation d,
for the states occupied by the N atoms. As in reference
[17], for all clusters considered here, the parameter k from
equation (2.3) was taken equal to 9.77. We shall call equi-
librium deformation that value of d which minimizes the
total energy of the chosen cluster. For the clusters withN
smaller than 70, the equilibrium deformations are repre-
sented in Figure 1 by black circles. The quantum numbers
[NlI] characterizing the states of energy εInl(d) are also
given.

In Figure 2 we plot the energy of the last electron,
represented in Figure 1 by black circles. Note that for
any magic cluster N the last electron energy is smaller
than that corresponding to the N + 1 cluster. As shown
in reference [17] this determines a big peak in the second
difference of the total energy of valence electrons. Our re-
sults are slightly different from those obtained with the
NC model. For example the peaks associated to the min-
ima from Figure 2 at N = 12, 24, 32 do not exist there.
Indeed they are shifted to N = 10, 26, 34, respectively.
The shell structure may also be pointed out in the plot
showing the N dependence of the shell correction of the
total energy. Indeed, this curve exhibits minima for magic
values of N . Comparing our results with those obtained
by different formalisms in references [21,22] several dif-
ferences are to be mentioned. While our model predicts
N = 40, 186 as magic numbers, in reference [22] one ob-
tains instead N = 34 and 168, respectively. Also in refer-
ence [21], the cluster N = 186 is not predicted as magic.
Another difference with reference [21] concerns the cluster
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Fig. 3. The cluster density (2.13) normalized to n0, given by
equation (3.2), is plotted as a function of (x, z) for y = 0 for
Na8. In the plane (x, z) the equi-density contour is plotted.

with N = 292 which is magic in our formalism while in
the above quoted reference there is no magic cluster with
N around 300. The above mentioned differences might be
caused by the fact that we use a projected spherical single
particle basis.

Here we want to see whether there are signatures for
magic clusters revealed by the electron density. To this
end we plot in Figures 3 to 10 the total density, given
by equation (2.13), normalized to the density inside the
jellium sphere:

n0 =
(

4π
3
r3
s

)−1

. (3.2)

In the low plane of the plots we give the equi-density con-
tour. For each magic cluster one finds indeed a distinctive
feature. To begin with let us look at Na8 where one dis-
tinguishes two maxima (Fig. 3). Note that multiplying ρ
with the electron charge one obtains the charge density.
The two maximal charge densities remind us of the clas-
sical rod effect saying that the charge distributed on a
surface has maximum density in the place corresponding
to a maximum curvature. The equi-density curves show a
clusterization of the maximal density. Therefore in some
small regions of the configuration space the cluster Na8

behaves like two clusters of Na4. As shown by Figure 4a
the clusterization persists in Na12.

However a new element appears there, namely the
small density spot in the middle of the equi-density plot.
For a better representation, the equi-density plot for Na12

is shown in Figure 4b in a plane seen in the perpendicular
direction. Inside the black background of second highest
density one remarks two distinct regions of lower den-
sities. This feature could be interpreted by saying that
Na12 consists of a Na∗8 core and two clusters each of them
with two atoms. Note that for Na12 the first 8 electrons
are distributed in energy levels which differ from those of
Na8, despite the fact they carry similar quantum numbers.
Therefore the subsystem of 8 electrons from Na12 is con-
ventionally associated to an excited cluster, Na∗8. Usually

(a)

(b)

(c)

Fig. 4. (a) The same as in Figure 3 but for Na12. (b) The data
are the same as in (a). The equi-density plot is presented in a
plane viewed in a perpendicular direction. (c) The difference
of normalized densities for Na12 and Na8 is shown as function
of the variables (x, z) for y = 0. The equi-density plot is given
in the plane (x, z).
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Fig. 5. The same as in Figure 3 but for Na18.

the cluster shape is defined by an equi-density contour.
In Figure 4b the shape of the second highest density con-
tour is prolate while the shape of the inner contour is of
oblate type. The clusterization is even more evident in
Figure 4c where we plot the difference of the densities for
Na12 and Na8. The lowest density region from the central
contour of Figure 4b correspond to the pillar under the
hat of Figure 4c. The second lowest minimum is another
pillar thicker than the first one and covered by the hat in
its upper part. In the first two lowest density regions the
density of Na8 is larger than that of Na12 and that hap-
pens due to the fact that Na12 is deformed while Na8 is
spherical. However there is a peripheral region where Na12

has a density higher than that of Na8. We interpret this
“satellite” density as cluster added to Na8. It is worth to
remark the fact that the change of density color is associ-
ated to filling a major shell. Since the electron density for
states of higher energy is more spread than those of the
inner ones, the dark spots in Figure 4b are determined by
the last four electrons which lie in the orbit [222]. Indeed,
their total density is proportional to the sum of the square
of the quadrupole spherical functions, i.e.

∑
|Y2m|2, and

exhibits two maxima for θ = 0 and θ = π. Since in the two
space intervals the 4 electrons are distributed with equal
probabilities one obtains the image of two dimers moving
around a core, i.e. Na∗8. This clustering features around
the magic configurations hold also in the nuclear case for
both the light [23] and heavy systems [24,25].

In Na18 (Fig. 5) the clusterization from the previ-
ous magic cluster (8) disappeared. The lower plane curve
shows that the cluster is “empty” in the central part. The
density increases with the radius, reaches a maximum, and
then decreases again. Na20 exhibits also a clusterization.
Indeed, there exists a central peak which makes the clus-
ter center having the maximum density. The clusterization
for Na20 can be better appreciated in Figure 6b where the
corresponding density was normalized to that for Na18.
The last two electrons are placed in the state [200] and
produce in Figure 6b, the dark ring as well as the central
spot.

(a)

(b)

Fig. 6. (a) The same as in Figure 3 but for Na20. (b) The
same as in Figure 4c but for Na20 and Na18.

Closing the major shell characterized by N = 3, an
interesting phenomenon happens. The cluster Na32 is the
first magic cluster which is deformed. Indeed, Figure 1
shows that above the energy level occupied by the last
electron there is an energy gap with no level inside. The
magic character of Na32 is also proved by the plot of the
second difference of the total energy, shown in Figure 3b of
reference [17]. As shown in Figure 7, this cluster exhibits
a high density concentrated in a small area around origin,
which decreases quickly to the value ρ/n0 = 0.75. This
value is met in a huge circular zone and then the density
goes rapidly to zero. The unusual large circular zone is,
in fact, a signature for this deformed cluster. Adding two
atoms to Na32 one obtains a spherical magic cluster, whose
density behaves qualitatively different from what we see
in Na32. Indeed in Figure 8, for the first time, we have
a skin structure, i.e. the density is maximum in the cen-
tral part, it decreases and reaches a minimum value in a
circular zone, the “empty” part, and then increases again
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Fig. 7. The same as in Figure 3 but for Na32.

Fig. 8. The same as in Figure 3 but for Na34.

reaching a maximum value followed by a quick decrease to
a vanishing density. We recognize easily a chestnut struc-
ture. Clearly this is also a cluster structure since the core
and the skin are two pieces of disconnected matter.

The skin structure disappears for Na40 shown in Fig-
ure 9, where two maxima show up. The maxima seen in
Na40 are less evident in Na42 (see Fig. 10a). The relative
density of Na42 and Na40, plotted in Figure 10b, points
out the two maxima discussed before as well as the outer
electrons orbiting around the core Na40. These maxima,
though less pronounced, resemble those of Na8, as shown
in Figures 11a and 11b. Comparing the plots from Fig-
ures 7 and 9, two features are to be mentioned. The re-
gion with density ρ/n0 ≤ 0.5 is more narrow in the case of
Na40. The main contribution of the last 8 electrons is to
augment the density above the plateau with ρ/n0 = 0.75
in Figure 7 and change the shape from deformed to spher-
ical. Therefore the additional 8 electrons are added in
a compact manner to the central region. In this respect
this situation is different from what was mentioned before
for Na12, namely the outer electrons contribute mainly
to the internal part rather than to the peripheral region.
Thus here the clusterization on the density surface does

Fig. 9. The same as in Figure 3 but for Na40.

(a)

(b)

Fig. 10. (a) The same as in Figure 3 but for Na42. (b) The
same as in Figure 4c but for Na42 and Na40.
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Fig. 11. (a) The same as in Figure 4b but for Na8. (b) The
same as in Figure 11a but for Na40.

not correspond to a clusterization in the configuration
space. However, the two spots of highest density give rise,
in the three dimensional space (X,Y, Z), to two discon-
nected regions of the same density which is consistent to
the usual meaning of clusterization. Thus, one could say
that the core of Na40 exhibits a cluster structure with a
component similar to Na8. In fact this suggests the Na40

might be tentatively viewed as formed out of two clusters
Na∗32 and Na∗8. Here Na∗32 denotes the cluster with the
electrons occupying the same single particle states as for
Na32 but for vanishing deformation. The excited cluster
Na8 corresponds to the last 8 electrons distributed to the
states [333] (2), [310] (2) and [311] (4). By promoting the
electrons from the major shell N = 3 to states of the ma-
jor shell N = 4, the magic cluster may exhibit negative
parity collective states. Since Na40 is spherical magic, the

octupole states are expected to be high in energy and of
a vibrational nature. Therefore in our as well as in the
CN models, the ground state of Na40 has good reflection
symmetry which is at variance with the predictions of ref-
erences [26,27] saying that this cluster has a ground state
with an octupole deformation. From the study of nuclear
systems it is well-known that the static octupole defor-
mation is favored by the quadrupole deformation. Indeed,
due to lifting the “m” degeneracy, the single particle states
of positive and negative parity come closer to each other
and thus their interaction may produce a stable octupole
deformed ground state [28,29]. Concluding, an octupole
deformation is usually thought as possible for quadrupole
deformed systems. Hitherto convincing evidence that Na40

has quadrupole deformation is however missing. Due to
these arguments we believe that even in the case the mean
field would contain an octupole term the cluster does not
exhibit a static octupole deformation.

Concluding the above analysis one may say that we
identified clusters of various structures: full or empty in
the center, skin like (or chestnut), clusterized. Without
any exception the magic clusters exhibit a certain type of
clusterization. Moreover their highest density is met in the
central part. As for the non-magic clusters, the electron
density in the central area is smaller (or higher) than that
in the peripheral part depending on whether the number of
electrons filling odd parity states is larger (or less) than the
number of electrons from even parity states. In the present
paper the notion of clusterization has a rich content be-
ing a manifestation of the shell structure. Indeed there are
various types of clusterization, each of types acquiring a
distinct definition: (a) as disconnected regions of the con-
figuration space limited by surfaces of constant density.
Moreover the components are exterior to each other. This
was the case of Na8, Na12 and Na40. (b) Disconnected re-
gions covered by surfaces of different constant densities,
exhibiting a chestnut structure. This is the case of Na34.
(c) A few electrons moving around a core of nearly con-
stant density, as a distinct entity. This is the case of Na42.
(d) An usual shell structure, where the shell is defined as
a set of points in the configuration space characterized by
the same density, with a density varying smoothly from
one shell to another.

The cluster shape variation, with the number of elec-
trons was also studied in reference [14] through the so-
called ultimate jellium model. The authors of this refer-
ence also noticed a sub-cluster structure of the light magic
clusters. Moreover, they identified for Na20 an isomer state
which is “empty” in the center. In contradistinction to
that situation, the present formalism predicts a ground
state for Na18 having this property. This is a strong sup-
port for the assertion that the angular momentum projec-
tion may modify the structure of the ground state.

According to Figure 1 the clusters with N = 5, 14, 15
have a prolate shape, while in the CN model they are of an
oblate shape. Our predictions for these clusters are simi-
lar with those of reference [30], obtained in a local spin-
density approximation formalism. Concerning the shape
of Na14, the result of the present paper is supported also
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Fig. 12. The r.m.s. values for the cluster NaN (dashed line),
defined by equation (4.1) and for the highest occupied (ho)
state in NaN , defined by equation (4.2) (full line), are given as
function of the number of atoms.

by the photo-absorption data [31] showing the plasmon-
resonance splitting. We stress, again, that the projected
spherical single particle basis is causing these variances
with the CN model. The specific structure of the clusters
analyzed has, certainly, an echo in their response to the
interaction with an electromagnetic field.

4 Cluster spatial extension

In reference [18] it was pointed out a striking similarity
between the behaviors of nuclear and cluster systems. In
fact this is the argument which supports best various at-
tempts to extend formalisms tested for nuclear systems
to cluster physics. One of the hottest subjects of nuclear
physics, at present, concerns the halo structure of some
light nuclei [32,33]. The halo structure in nuclei, is not a
global property but characterizes the last nucleons in the
system. One of the most studied cases is that of 11Li where
the last two neutrons have a large spatial extension and a
weak binding energy. The spatial spreading is due to the
fact that the last neutrons stay in the 2s1/2 state, which is
favored with respect to the state 1p1/2 due to the tensorial
force which is increased by the large N − Z asymmetry.

Here we address the problem whether such a structure
might be seen also in sodium clusters. Of course here we
don’t have an N −Z asymmetry effect since we have only
one type of fermions with a unique charge. However in the
higher part of the spectrum many level crossings appear
as shown in Figure 1. A measure for the spatial extension
is the r.m.s. value defined by

〈r2〉1/2N =
[

1
N

∫
r2ρ d3r

]1/2

, (4.1)

with the density function given by equation (2.13). For
the last electron, the r.m.s. value is defined by

〈r2〉1/2ho =
[∫

r2|ΦIM;1/2(nl; d)|2 d3r

]1/2

, (4.2)

Fig. 13. The same as in Figure 9 but for Na41.

where only the density for the highest occupied level (ho)
is considered. From Figure 12 we see that while the r.m.s.
value for the cluster NaN has a smooth behavior with N
the r.m.s. value for the last electron has a discontinuity at
the magic numbers 8, 20, 40 and a peak for N = 41, 42.
As shown in Figure 2, the corresponding odd clusters 9,
21, 41, are characterized by minimal ionization energy for
the last electron. A particular interest deserves the cluster
Na41 since according to Figure 12 it is followed by a jump
back of the r.m.s value at Na43. Inspecting Figure 1 one
sees that the level inversion mentioned above takes place
indeed for the case of Na42. Indeed the last two electrons
of Na42 do not occupy the level [NlI] = [310], as it hap-
pens for Na43 and Na44, but the state [444] descending
from the upper major shell. The analogy with the nu-
clear case is only partial since here the intruder state is of
high angular momentum (l = 4) and therefore one obtains
only a moderate large extension. On the other hand the
last electron energy in Na41 is maximum with respect to
that of the neighboring clusters (see Fig. 2), which means
that this odd cluster is characterized by a minimum ion-
ization energy. By contrast in the nuclear case, the spatial
spreading is a combined effect of a level crossing and a low
value of the orbital angular momentum. Comparing the
axes of the last large equi-density contours (ρ/n0 ≈ 0.5)
we see that the longer axis of Na41, Figure 13, is sensibly
larger (with about 2 a.u.) than that for Na40, given in Fig-
ure 9. From Figure 2 one obtains that the r.m.s. for Na41

is about 1.1 a.u. larger than for the neighboring clusters
with N = 40, 43, 44. Summarizing, in the present descrip-
tion two interesting features were pointed out, caused by
the crossing of levels belonging to different major shells.
The cluster Na42 has the last electron strongly bound and
its orbit is largely spread due to the fact that the corre-
sponding deformation is large. The odd system Na41 has
the last electron minimally bound, or in other words it is
characterized by a minimum ionization energy, and more-
over the orbit of the last electron has a large r.m.s. value.

Concluding, despite the fact that the last electron
in Na41 moves with a large orbital angular momentum,
l = 4, the behavior of ionisation energy and the r.m.s
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value against the variation of the total number of atoms
resembles the properties of nuclear systems necessary for
a halo structure.

It is an open question whether this property influences
in a visible manner the global behavior of Na41.

5 Static polarizability and plasmon frequency

At the classical level the polarizability of a metallic sphere
of radius R is defined as follows. Suppose the sphere is
placed in a uniform electric field E. Then the sphere be-
haves as an electric dipole P parallel to E. The ratio of
the magnitudes of the two vectors P/E is called polariz-
ability. The dipole appears as a reaction of the metallic
sphere to the external field, the charge inside the sphere
being slightly displaced so that the generated field cancels
the external one, inside the sphere. For a metallic sphere
of radius R the polarizability is equal to R3. For a metallic
cluster with the jellium sphere of radius R, this is referred
to as the classical value of polarizability. The experimental
data for small sodium cluster (up to 40 atoms per cluster)
showed that the polarizability exceeds the classical value
by 60–80% but it goes to the bulk value when the number
of constituents is increased, [34–36]. It seems that the elec-
trons spillout of the boundary of the positive background
screens the external field which results in having a polar-
izability increased from R3 to (R+δ)3. The numerical cal-
culations with density-functional method predict polariz-
abilities larger than the classical values but still 20% under
the experimental data [37–40]. Having in mind the classi-
cal picture, the structure of the charge density function is
determining the position of the center of mass of the spill-
out electrons. In this respect the description of the static
polarizability is a challenge for any microscopic model.
Moreover, since the external field induces a dipole moment
via polarization of the electronic charge, it may excite a
dipole giant state. Therefore there is a direct connection
between polarizability and the plasmon frequency which is
expressed by the dipole sum rule [4,41–45]. Indeed, the po-
larizability is twice the inverse energy-weighted sum rule
while the squared plasmon energy, for a spherical system,
is given by the ratio of the energy and the inverse energy
sum rules. The classical result for the plasmon energy was
calculated first by Mie [46], long time ago, and is deter-
mined by the potential inside a uniformly charged metallic
sphere which, up to an additive constant, is given by:

2πρj
3

r2 =
1
2
meω

2
Mier

2, (5.1)

where ρj denotes the jellium density. This yields immedi-
ately for the Mie frequency the expression:

ωMie = r−3/2
s [a.u.]. (5.2)

Considering the Mie frequency in the above mentioned
equation relating the plasmon energy and the static po-
larizability, one obtains for the static polarizability of a
metal-sphere of radius R, the following expression:

α0 = R3. (5.3)

Quantum mechanical effects determine corrections to the
classical results for plasmon energy and polarizabilities.
The electron density is not going sharply to zero at the
cluster surface but reduces gradually at the surface and
moreover extends significantly beyond to jellium edge. The
spillout electrons produce a screening effect against exter-
nal fields which results in changing the classical result for
polarizability to:

α = (R+ δ)3. (5.4)

The radius shift δ can be expressed in terms of the frac-
tion of the total number of electrons which are spilled out
the jellium sphere and the final result for the static polar-
izability reads:

α = R3

(
1 +
Nsp

N

)
, (5.5)

where Nsp denotes the number of spilled out electrons and
is given by:

Nsp =
∫
r>R

ρ d3r. (5.6)

The static polarizability given above approximate quite
well the result predicted by the inverse-energy weighted
sum rule:

α = R3

(
1− Nsp

N

)−1

. (5.7)

Although the static polarizability given by (5.5) is for-
mally identical to that given earlier in the literature [41],
there is, however, a new feature in the present paper, con-
sisting in that the electron density is determined by the
projected spherical single particle basis.

The energies of the dipole resonances correspond-
ing to the three independent directions can be obtained
within the RPA (random phase approximation) formal-
ism as coherent superposition of the particle hole excita-
tions. However, it is much easier to calculate these en-
ergies using classical arguments. Indeed the total work
performed by displacing the charges from the points r to
r +∆xi +∆yj +∆zk can be written as the sum of three
string potential energies. The result for the plasmon en-
ergy corresponding to the vibration along the direction
“i” is:

h̄ωi =
[
− eh̄2

Nme

∫
d3rVbg(r)

∂2

∂x2
i

ρ(r)
]1/2

(5.8)

where Vbg denotes the background potential created by
the ionic core. This potential energy is obtained following
the arguments already given for the deformed mean field
of single particle motion. For example the potential en-
ergy corresponding to the single particle basis used in the
present paper, is obtained by averaging the right hand side
of equation (2.1) on the coherent state (2.5) and leaving
out the terms depending on single particle linear momen-
tum. The final expression for the background potential



A.A. Raduta et al.: Deformed atomic clusters in a projected spherical basis 75

5 15 25 35 45
N

0.2

0.3

0.4

0.5

0.6

0.7

α N
/N

α 1

Present calculation
LDA approximation

Na bulk limit

Fig. 14. The static polarizabilities predicted by the present
work (black circles) are compared with those given in refer-
ence [27] with a LDA approach and the bulk limit.

obtained by deforming the spherical Coulomb potential,
which defines ωMie by means of equation (5.1), is:

Vbg(r) = V0 +meω
2
Mie

×
[(

1
2

+
4d2 + 5
8πk2

)
r2 − d

√
2

k
r2Y20(θ, φ)

]
. (5.9)

For a compact writing we have used the notation
(x1, x2, x3) = (x, y, z). The first term in equation (5.9)
is a negative constant chosen so that for d = 0 the po-
tential vanishes outside the jellium sphere. The difference
between the N dependences of oscillator frequencies ω0

and ωMie is discussed in detail in reference [47]. The sec-
ond frequency characterizes a surface oscillation caused
by a long range interaction, i.e. Coulomb force, while the
first frequency may induce a volume plasmon oscillation.

Performing twice an integration by parts in equa-
tion (5.9) and using the properties of Vbg and ∂ρ/∂xi for
r = 0 and r = R, one finds the final expression for the
plasmon frequency:

ωi = ωMie

[
fi
Nins

N

]1/2

[a.u.], i = x, y, z (5.10)

where Nins denotes the number of electrons inside the jel-
lium sphere and the factors fi are:

fi =
∂2Vbg

∂x2
i

· (5.11)

Note that for spherical clusters the coefficients fi, in equa-
tion (5.10), are all equal to unity and the correspond-
ing plasmon energy is identical to that predicted by the
sum rule approach. Since the factor accompanying ωMie

in equation (5.10) is less than unity, the classical plasmon
is red shifted.

Our numerical calculations, shown in Figure 14, in-
clude clusters with N up to 42. The polarizability is ob-
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Fig. 15. The plasmon energies for x, y and z axes are given
in units of eV. They are calculated with equation (5.8).

tained from equation (5.5). In order to indicate the N
dependence we introduce a lower index for it. For a better
presentation we normalize the predicted values to Nα1

where α1 denotes the polarizability of the sodium atom
and has the value of 159 a.u. [48]. Our results are about
10% lower than the prediction of the local density approx-
imation (LDA) [38] and about the same amount above the
bulk limit.

The plasmon energies are presented in Figure 15. Since
the mean field has axial symmetry, two of the plasmon
energies are equal to each other. We also plot the ratio
ωz/ωx.This ratio is equal to one for spherical, under-unity
for prolate, and over-unity for oblate clusters. Of course
the energy splittings depend on the magnitude of the de-
formation parameter d. The larger d, the larger the energy
split. If one defines and average energy for each cluster:

ω =
1
3

(ωx + ωy + ωz). (5.12)

This quantity is equal to about 3 eV for all clusters consid-
ered here. The largest value is 3.11 eV, reached for Na40,
while Na10 has the lowest average energy, equal to 2.96 eV.
The present results for spherical clusters Na8, Na20, Na40

are larger than those reported by Kresin in reference [49]
and obtained with the statistical Thomas-Fermi approach.
The results there, for the three clusters are 2.53, 2.67 and
2.77 eV, respectively. The results presented here for light
clusters are similar to those obtained through a local RPA
approach in reference [50], where the centroid energy is
about 3 eV.

The predicted energies in our approach are higher than
the energy of the RPA collective state. This happens since
while in our case all strength is concentrated in one state,
in the RPA formalism the dipole strength is distributed
among several states. For deformed clusters, the RPA ap-
proach using the CN single particle basis predicts states
with K = 1 where K denotes the eigenvalue of the angular
momentum projection on the symmetry axis. However, in
the predicted RPA state the angular momentum has not
a definite value. Due to this fact, the distribution of the
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dipole strength is affected by errors. In order to provide
an accurate description of the dipole E1 transitions from
ground to the RPA states, the use of states of good an-
gular momentum is necessary. A possible solution for this
problem is offered by the present paper where a projected
spherical single particle basis is defined. An extensive RPA
description based on the single particle space defined in
reference [17] and the present paper, is under work and
the results will be published in a forthcoming paper.

For axial symmetric clusters the plasmon energies
shown in Figure 15 agree very well with the corresponding
predictions of the ultimate jellium model [14]. Among light
clusters with an even number of components two cases of
non-axial shapes were identified. These are Na12 and Na16.
By inspecting Figure 4b for Na12, one may attempt to as-
sociate the three plasmon frequencies to the three regions
characterized by the three distinct equi-density contours.
Indeed, for a slightly asymmetric mean field the inner re-
gion may accommodate a distinct shape and exhibits a
motion with a specific frequency. In an RPA formalism,
the configurations contributing most to the three regions
may build up coherently the three modes of the deformed
system. Actually this is only one possible effect caused by
the complex structure of the density function shown in
Figures 3–10b.

6 Conclusions

The projected spherical single particle basis, introduced
by one of the present authors (A.A.R.) in a previous pub-
lication, is used to investigate new properties of sodium
clusters. The main results presented in the previous sec-
tions can be summarized as follows.

A systematic analysis of the valence electron density
is performed. The modification of the density function as
well as of the equi-density contour plots, with the number
of atoms is pointed out. Several interesting structures for
the cluster density are found. Features as, high density
or “empty” (i.e. low density) in the central part, cluster-
ization of small clusters inside the big cluster, skin (or
chestnut) structures are identified for clusters with less
than 45 atoms. All magic clusters exhibit a certain kind
of clusterization structure which may be seen either in
the configuration space as disconnected regions closed by
a surface of constant density respectively, or some disjunct
areas on the the density plotted in the variables (X,Z).

The predicted shapes are in good agreement with other
theoretical results obtained with different formalisms.
However, several discrepancies are pointed out. In the
case of Na14 the existent data [31] confirm our predic-
tion. The spatial distribution of the electron density may
generate independent harmonic modes corresponding to
distinct deformation degrees of freedom.

Guided by the analogy with the nucleon systems we
searched for a halo structure in atomic clusters. It seems
that we found one in the small cluster region. Indeed, Na41

has the specific properties of a halo structure, i.e. the last
electron has a large spreading comparing its size to that of
the neighboring clusters, and also it is weakly bound. As

shown in Figure 10b, Na42 consists of two atoms moving
around a core (Na40) which has a cluster structure of two
smaller sub-cores of magic clusters Na32 and Na8. Such a
structure might be seen through an induced fragmentation
process for Na42.

The static polarizability and plasmon energies have
been calculated. Our results for polarizabilities are above
the bulk limit by a 10%, and by about the same amount
below the predictions of LDA approach. The deviation
from experimental data are of the order of 30%. This is to
be expected in the classical scheme used here, and can be
improved with RPA calculations.

The plasmon energies were calculated with the for-
mula (5.10). For spherical clusters there is only one state
while departing from the magic cluster the state split into
two parts one consisting in two degenerate states of energy
ωx = ωy and another one of energy ωz. The split increases
with N , meets the maximum value at the middle of the
distance between the two consecutive magic clusters and
then decreases to zero at the next magic cluster. The or-
dering of the two energies depends on the cluster shape.
For prolate clusters ωz ≤ ωx while for oblate clusters the
ordering is changed. The strong dependence on the num-
ber of atoms, for the the plasmon energies is caused by the
modification of the charge density, described in Section 3,
when the number of atoms is increased. Similar calcula-
tions have been performed with the ultimate jellium model
in reference [14]. Apart from the fact that they identify a
triaxial shape in Na12 and Na16 our results agree quite
well.

Although the experimental data are obtained in the
laboratory frame, where the rotational symmetry is
present, the CN model is able to nicely reproduce many
data. In such cases the K-components of the considered
observable have such a distribution that oneK-component
is by far prevailing over the remaining ones. However if the
mixture has not a privileged K-component the results in
the intrinsic and laboratory frame are different from each
other. Obviously in the former cases one expects that the
present paper and CN predictions are close to each other,
while in the later case they are different. As a matter of
fact, throughout this paper we gave several examples be-
longing either to the first or to the second class of prop-
erties.

In a forthcoming publication we shall exploit the qual-
ity of our single particle basis of having good angular mo-
mentum, and perform an RPA-particle-hole calculations
for the giant dipole resonance.

As a final conclusion one may say that the projected
single particle basis seems to be suitable for describing the
main properties of the atomic clusters.

This work was supported by CNCSIS (Romania) under the
contract A918/2001.
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